Clusterization by the K-means method when K is unknown

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lloyd’s k-means Method∗

We present polynomial upper and lower bounds on the number of iterations performed by Lloyd’s method for k-means clustering. Our upper bounds are polynomial in the number of points, number of clusters, and the spread of the point set. We also present a lower bound, showing that in the worst case the k-means heuristic needs to perform Ω(n) iterations, for n points on the real line and two center...

متن کامل

The Complexity of the k-means Method

The k-means method is a widely used technique for clustering points in Euclidean space. While it is extremely fast in practice, its worst-case running time is exponential in the number of data points. We prove that the k-means method can implicitly solve PSPACE-complete problems, providing a complexity-theoretic explanation for its worst-case running time. Our result parallels recent work on th...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Quantization and the method of k -means

T HE THEORY developed in the statistical literature for the method of k-means can be applied to the study of optimal k-level vector quantizers. In this paper, I describe some of this theory, including a consistency theorem (Section II) and a central lim it theorem (Section IV) for k-means cluster centers. These results help to explain the behavior of optimal vector quantizers constructed from l...

متن کامل

Learning the k in k-means

When clustering a dataset, the right number k of clusters to use is often not obvious, and choosing k automatically is a hard algorithmic problem. In this paper we present an improved algorithm for learning k while clustering. The G-means algorithm is based on a statistical test for the hypothesis that a subset of data follows a Gaussian distribution. G-means runs k-means with increasing k in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ITM Web of Conferences

سال: 2019

ISSN: 2271-2097

DOI: 10.1051/itmconf/20192401013